pandas-指南

Pandas介绍

在处理实际的金融数据时,一个条数据通常包含了多种类型的数据,例如,股票的代码是字符串,收盘价是浮点型,而成交量是整型等。在C++中可以实现为一个给定结构体作为单元的容器,如向量(vector,C++中的特定数据结构)。在Python中,pandas包含了高级的数据结构Series和DataFrame,使得在Python中处理数据变得非常方便、快速和简单。

pandas主要的两个数据结构是Series和DataFrame,随后两节将介绍如何由其他类型的数据结构得到这两种数据结构,或者自行创建这两种数据结构,我们先导入它们以及相关模块:

1
2
import numpy as np
from pandas import Series, DataFrame

Series

从一般意义上来讲,Series可以简单地被认为是一维的数组。Series和一维数组最主要的区别在于Series类型具有索引(index),可以和另一个编程中常见的数据结构哈希(Hash)联系起来

numpy-指南

numpy

基础篇

NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。

下面数组的秩为2(它有两个维度).第一个维度长度为2,第二个维度长度为3.

1
2
[[ 1., 0., 0.],
[ 0., 1., 2.]]

NumPy的数组类被称作 ndarray
更多重要ndarray对象属性有:

  • ndarray.ndim
    数组轴的个数,在python的世界中,轴的个数被称作秩
  • ndarray.shape
    数组的维度。这是一个指示数组在每个维度上大小的整数元组。例如一个n排m列的矩阵,它的shape属性将是(2,3),这个元组的长度显然是秩,即维度或者ndim属性
  • ndarray.size
    数组元素的总个数,等于shape属性中元组元素的乘积。
  • ndarray.dtype
    一个用来描述数组中元素类型的对象,可以通过创造或指定dtype使用标准Python类型。另外NumPy提供它自己的数据类型。
  • ndarray.itemsize
    数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(=64/8),又如,一个元素类型为complex32的数组item属性为4(=32/8).
  • ndarray.data
    包含实际数组元素的缓冲区,通常我们不需要使用这个属性,因为我们总是通过索引来使用数组中的元素。

matplotlib-指南

matplotlib

原文载于此译文载于此
Matplotlib 的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。

初级绘制

1
2
3
4
5
6
7
8
9
from pylab import *
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(X), np.sin(X)
plot(X,C)
plot(X,S)
show()

默认配置

下面的代码中,我们展现了 matplotlib 的默认配置并辅以注释说明,这部分配置包含了有关绘图样式的所有配置。代码中的配置与默认配置完全相同,你可以在交互模式中修改其中的值来观察效果。

linux文件管理器nautilus如何修改侧边栏位置

从13.4或13.10开始,Ubunt文件管理器(Nautilus)侧边栏的顶部显示为“位置(Place)”,大都是我一年用不着几次的文件夹,一直看它不顺眼。现在装了Ubuntu Kylin 14.04,竟然还是没有改观。只好大肆搜索,果然不是我一个人对此觉得不爽,原文在此:

http://jamesmcminn.com/2012/12/removing … -6-places/

简单来说就是修改个人目录 ~/.config 下的 user-dirs.dirs 文件,将你不想要的都注释掉或者删除:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# This file is written by xdg-user-dirs-update
# If you want to change or add directories, just edit the line you're
# interested in. All local changes will be retained on the next run
# Format is XDG_xxx_DIR="$HOME/yyy", where yyy is a shell-escaped
# homedir-relative path, or XDG_xxx_DIR="/yyy", where /yyy is an
# absolute path. No other format is supported.
#
XDG_DESKTOP_DIR="$HOME/桌面"
XDG_DOWNLOAD_DIR="$HOME/下载"
#XDG_TEMPLATES_DIR="$HOME/模板"
#XDG_PUBLICSHARE_DIR="$HOME/公共的"
#XDG_DOCUMENTS_DIR="$HOME/文档"
#XDG_MUSIC_DIR="$HOME/音乐"
#XDG_PICTURES_DIR="$HOME/图片"
#XDG_VIDEOS_DIR="$HOME/视频"

再创建一个文件:
echo "enabled=false" > ~/.config/user-dirs.conf

重启看看,是不是清爽了。

linux 链接

linux 链接

Linux链接概念

Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。

硬连接

硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连接就是硬连接。硬连接的作用是允许一个文件拥有多个有效路径名,这样用户就可以建立硬连接到重要文件,以防止“误删”的功能。其原因如上所述,因为对应该目录的索引节点有一个以上的连接。只删除一个连接并不影响索引节点本身和其它的连接,只有当最后一个连接被删除后,文件的数据块及目录的连接才会被释放。也就是说,文件真正删除的条件是与之相关的所有硬连接文件均被删除。

软连接

另外一种连接称之为符号连接(Symbolic Link),也叫软连接。软链接文件有类似于Windows的快捷方式。它实际上是一个特殊的文件。在符号连接中,文件实际上是一个文本文件,其中包含的有另一文件的位置信息。

python_note

dict和set

dict

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

1
2
names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

python-IO

IO编程中,Stream(流)是一个很重要的概念,可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动。Input Stream就是数据从外面(磁盘、网络)流进内存,Output Stream就是数据从内存流到外面去。对于浏览网页来说,浏览器和新浪服务器之间至少需要建立两根水管,才可以既能发数据,又能收数据。

很明显,使用异步IO来编写程序性能会远远高于同步IO,但是异步IO的缺点是编程模型复杂。想想看,你得知道什么时候通知你“汉堡做好了”,而通知你的方法也各不相同。如果是服务员跑过来找到你,这是回调模式,如果服务员发短信通知你,你就得不停地检查手机,这是轮询模式。总之,异步IO的复杂度远远高于同步IO
注意,本章的IO编程都是同步模式,异步IO由于复杂度太高,后续涉及到服务器端程序开发时我们再讨论。

python-面向对象编程

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。
面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。

而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。

在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。
数据封装、继承和多态是面向对象的三大特点

python-面向对象高级编程

数据封装、继承和多态只是面向对象程序设计中最基础的3个概念。在Python中,面向对象还有很多高级特性,允许我们写出非常强大的功能。
我们会讨论多重继承、定制类、元类等概念。

动态绑定

动态绑定属性

直接

1
2
3
4
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael

动态绑定方法

1
2
3
4
5
6
7
8
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

为了给所有实例都绑定方法,可以给class绑定方法:

1
>>> Student.set_score = MethodType(set_score, Student)